Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Namık Özdemir, ${ }^{\text {a }}$ Muharrem Dincer, ${ }^{\text {a }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {c }}$ and Selami Sașmaz ${ }^{\text {b }}$

[^0]Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.126$
Data-to-parameter ratio $=9.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(m-Chlorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one

The conformation of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$, can be described in terms of four essentially planar fragments. The triazole ring is planar within $0.008 \AA$, and its plane, while being almost parallel to the benzene plane of the benzylamino group [dihedral angle $2.95(14)^{\circ}$], forms a dihedral angle of $16.43(12)^{\circ}$ with the plane of its 3 -phenyl substituent. The four-atom bridge (triazole) $\mathrm{N}-\mathrm{N}(\mathrm{H})-\mathrm{C}\left(\mathrm{H}_{2}\right)-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$, linking the triazole moiety with the chlorophenyl group, is also almost planar, the $\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angle being $-178.82(13)^{\circ}$. Its mean plane is approximately normal to the triazole and chlorophenyl planes [dihedral angles 107.08 (10) and $108.81(10)^{\circ}$, respectively]. Two independent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds link the molecules into infinite chains running along the b axis of the crystal.

Comment

$1,2,4$-Triazole rings are typically planar 6π-electron aromatic systems, featuring an extensive chemistry (Temple, 1981; Benson, 1967). Detailed studies have been carried out on substituted 1,2,4-triazole derivatives (Cornelissen et al., 1992; Kunkeler et al., 1996; Chinnakali et al., 1999; Fun et al., 1999; Kumaran et al., 1999). Their findings indicate that the 1,2,4triazole moiety is associated with diverse pharmacological activities, such as analgesic, anti-asthmatic, diuretic, antifungal, antibacterial, pesticidal and anti-inflammatory (Bennur et al., 1976; Heubach et al., 1980; Sharma \& Babel, 1982; Mohamed et al., 1993). Furthermore, some of the complexes containing 1,2,4-triazole ligands have rather peculiar structures and specific magnetic properties (Vreugdenhil et al., 1987; Albada et al., 1984; Vos et al., 1983; Kahn \& Martinez, 1998). Taking into account the importance of the 1,2,4-triazoles, we have undertaken the X-ray diffraction study of the title compound, (I), a new triazole derivative with a benzylamino substituent.

The conformation of the molecule of (I) (Fig. 1) can be described in terms of four essentially planar fragments. The triazole ring $\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 9$ is planar within $0.008 \AA$, and its plane, while being almost parallel to the plane of benzene ring C1-C6 [dihedral angle $2.95(14)^{\circ}$], forms a small dihedral angle of $16.43(12)^{\circ}$ with the plane of the triazole 3-phenyl substituent $\mathrm{C} 10-\mathrm{C} 15$. The aminomethylene bridge linking the

Received 17 June 2003 Accepted 21 July 2003 Online 31 July 2003

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title compound, (I), showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
triazole moiety with the chlorophenyl group is also almost planar, the $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ torsion angle being $-178.82(13)^{\circ}$. Its $\mathrm{N} 2 / \mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 6$ mean plane is approximately normal to both the triazole and chlorophenyl planes [dihedral angles 107.08 (10) and $108.81(10)^{\circ}$, respectively].

There are two independent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the structure, involving two 'active' H atoms H 7 and H 8 [N1O1 ${ }^{\mathrm{i}} 2.981$ (15) \AA and N3-O1 $1^{\text {ii }} 2.832$ (17) A ; symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x,-y,-z]$ (Table 2). Each of the two hydrogen bonds is responsible for the formation of a typical hydrogen-bonded centrosymmetric motif, with the carbonyl atom O1 acting as a single acceptor for both hydrogen bonds. Such an arrangement results in the formation of infinite chains running along the b axis of the crystal (Fig. 2).

Experimental

The Schiff base shown in the Scheme (Kahveci \& İkizler, 2000) $(2.99 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in 40 ml of dry diglyme with gentle heating and a solution of $\mathrm{NaBH}_{4}(0.03 \mathrm{~mol})$ in 30 ml of dry diglyme was slowly added with constant stirring. After the mixture was refluxed for 8 h , it was allowed to cool. To precipitate the product, 300 ml of water was added and the mixture was allowed to stand overnight at 273-278 K. The precipitate was filtered and washed with cold water. After drying in vacuo, the solid product was recrystallized from an ethanol/water mixture to afford the desired compound ($1.50 \mathrm{~g}, 47 \%$). M.p: 446-447 K.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}$	$Z=2$
$M_{r}=300.74$	$D_{x}=1.385 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.1819(10) \AA$	Cell parameters from 6723
$b=7.4204(9) \AA$	reflections
$c=14.3295(19) \AA$	$\theta=2.7-29.5^{\circ}$
$\alpha=88.224(10)^{\circ}$	$\mu=0.27 \mathrm{~mm}^{-1}$
$\beta=80.974(11)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=72.945(10)^{\circ}$	Rectangular, colourless
$V=720.94(16) \AA^{\circ}$	$0.80 \times 0.48 \times 0.25 \mathrm{~mm}$

Figure 2
PLATON plot (Spek, 1997) of the crystal packing of (I), viewed down the a axis and showing hydrogen-bonded infinite chains running along the b axis.

Data collection

Stoe IPDS 2 diffractometer

φ scans

Absorption correction: none
2327 measured reflections
2327 independent reflections
1975 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.126$
$S=1.07$
2327 reflections
242 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.044 \\
& \theta_{\max }=24.8^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=0 \rightarrow 16
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 4$	$1.736(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.332(2)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.2381(19)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.374(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.4054(17)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.299(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.472(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.504(2)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.380(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.467(2)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.381(2)$		
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7$	$110.79(13)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl} 1$	$119.05(15)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$108.47(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$109.07(15)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$124.60(12)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 3$	$129.87(16)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$126.84(13)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	$126.78(13)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 4$	$113.12(15)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 2$	$103.34(13)$
$\mathrm{C} 9-\mathrm{N} 4-\mathrm{N} 3$	$105.32(13)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{N} 2$	$109.72(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.41(18)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 10$	$122.54(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	$119.49(15)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$127.70(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H7 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.850(19)$	$2.15(2)$	$2.981(2)$	$164(2)$
N3-H8 \cdots O $^{\mathrm{i}}$	$0.79(2)$	$2.06(2)$	$2.832(2)$	$167(2)$

Symmetry codes: (i) $-x,-1-y, 2-z$; (ii) $-x,-2-y, 2-z$.

The H atoms were located in a difference map and refined isotropically $(\mathrm{N}-\mathrm{H}=0.79-0.85 \AA$ and $\mathrm{C}-\mathrm{H}=0.87-1.04 \AA)$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Albada, G. A. van, de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1984). Inorg. Chem. 23, 1404-1408.
Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Rev. Roum. Chim. 21, 757-762; Chem. Abstr. 85, 94306j.

Benson, F. R. (1967). Tetrazoles, Tetrazines and Purines and related Ring Systems, in Heterocyclic Compounds, Vol. 8, edited by R. C. Elderfield, pp. 1-104. New York: Wiley.
Chinnakali, K., Fun, H.-K., Senthilvelan, A., Sriraghavan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136-1138.
Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. \& Reedijk, J. (1992). Inorg. Chem. 31, 198-202.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fun, H.-K., Chinnakali, K., Shao, S., Zhu, D. \& You, X. Z. (1999). Acta Cryst. C55, 770-772.
Heubach, G., Sachse, B. \& Buerstell, H. (1980). US Patent No. 4239 525; Chem. Abstr. 92, 181200h.
Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.
Kahveci, B. \& İkizler, A. A. (2000). Turk. J. Chem. 24, 343-351.
Kumaran, D., Ponnuswampy, M. N., Jayanthi, G., Ramakrishnan, V. T., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 581-582.
Kunkeler, P. J., van Koningsbruggen, P. J., Cornelissen, J. P., van der Horst, A. N., van der Kraan, A. M., Spek, A. L., Haasnoot, J. G. \& Reedijk, J. (1996). J. Am. Chem. Soc. 118, 2190-2197.
Mohamed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Sharma, R. S. \& Babel, S. C. (1982). J. Indian Chem. Soc. 59, 877-880.
Sheldrick, G. M. (1986). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1997). PLATON. University of Utrecht, The Netherlands.
Stoe \& Cie (2001). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.
Temple, C. (1981). Triazoles 1, 2, 4, in The Chemistry of The Heterocyclic Compounds, Vol. 34. New York: Wiley-Interscience.
Vos, G., le Febre, R. A., de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1983). J. Am. Chem. Soc. 105, 1682-1683.

Vreugdenhil, W., Haasnoot, J. G. \& Reedijk, J. (1987). Inorg. Chim. Acta, 129, 205-216.

[^0]: ${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ${ }^{\text {b }}$ Karadeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey, and ${ }^{\text {' }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey

